It is generally accepted that the gastric mucus layer provides a protective barrier between the lumen and the mucosa, shielding the mucosa from acid and digestive enzymes and preventing autodigestion of the stomach epithelium. However, the precise mechanisms that contribute to this protective function are still up for debate. In particular, it is not clear what physical processes are responsible for transporting hydrogen protons, secreted within the gastric pits, across the mucus layer to the lumen without acidifying the environment adjacent to the epithelium. One hypothesis is that hydrogen may be bound to the mucin polymers themselves as they are convected away from the mucosal surface and eventually degraded in the stomach lumen. It is also not clear what mechanisms prevent hydrogen from diffusing back toward the mucosal surface, thereby lowering the local pH. In this work we investigate a physics-based model of ion transport within the mucosal layer based on a Nernst-Planck-like equation. Analysis of this model shows that the mechanism of transporting protons bound to the mucus gel is capable of reproducing the trans-mucus pH gradients reported in the literature. Furthermore, when coupled with ion exchange at the epithelial surface, our analysis shows that bicarbonate secretion alone is capable of neutralizing the epithelial pH, even in the face of enormous diffusive gradients of hydrogen. Maintenance of the pH gradient is found to be robust to a wide array of perturbations in both physiological and phenomenological model parameters, suggesting a robust physiological control mechanism.
NEW & NOTEWORTHY This work combines modeling techniques based on physical principles, as well as novel numerical simulations to test the plausibility of one hypothesized mechanism for proton transport across the gastric mucus layer. Results show that this mechanism is able to maintain the extreme pH gradient seen in in vivo experiments and suggests a highly robust regulation mechanism to maintain this gradient in the face of dynamic lumen composition.
From: Lewis, O. L., Keener, J. P., Fogelson, A. L. http://ajpgi.physiology.org/cgi/content/abstract/313/6/G599?rss=1
No comments:
Post a Comment